BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 44, 2877 (1971)

Basicities of Formamide, Acetamide, and Their Alkyl Derivatives in Aqueous Solution

Goro Wada and Takako Takenaka

Department of Chemistry, Nara Women's University, Nara

(Received May 10, 1971)

The basicity constants pK_a of formamide, acetamide and their alkyl derivatives, generally represented by $R_1CONR_2R_3$ where R_1 , R_2 , and R_3 stand for H, CH_3 , C_2H_5 , CH_2Cl , or $CHCl_2$ respectively, were measured in aqueous solution spectrophotometrically, using o-nitroaniline as indicator. Measurements were carried out at 25°C for wavelengths of 380, 410, and 440 nm, and ionic strength of μ =0.55m. The acid dissociation constant of o-nitroaniline, K_{In} =[H+][In]/[HIn+], was taken to be 1.27m.1)

The results of the determination of pK_a related to various amides are listed in Table 1, together with the values of their donor numbers $DN(\mathrm{SbCl_5})^{2)}$ and dielectric constants D. The thermodynamical constants pK_a^0 can be approximately estimated by the following equation.

$$pK_a^0 = pK_a - 0.5\sqrt{\mu}$$

According to recent NMR studies,³⁾ the protonation of most amides was found to occur predominantly at O-atom and not at N-atom, as revealed by the fact that the double bond character between C and N atoms and the barrier to rotation around the C–N bond increase with the protonation of amides.⁴⁾ The nature of amides is thus acidic and far less basic than ammonia and alkylamines.

Alkylamines usually exhibit pK_a values 9—11, in remarkable contrast to -0.1 ± 0.2 as the mean value of $pK_a{}^0$ of the nine amides in Table 1. The values of $pK_a{}^0$ of some amides given in Table 1 were separately measured by potentiometric titration with perchloric acid in acetic scid with chloranil electrode and coincide well with our results within the mean discrepancy $\pm0.4^{5}$

Although the pK_a does not seriously vary with the substitution of H by alkyl radicals in both formamide and acetamide, there is a slight tendency for pK_a to grow higher as R_2 or R_3 changes in the direction $H \rightarrow CH_3 \rightarrow C_2H_5$. The effect of chlorine atom in R_1 in acetamide upon pK_a is distinct, making the compound less basic. No close relationship of pK_a with the donor numbers and the dielectric constants is noticed, as far as our data are concerned.

Table 1. Basicity constants, donor numbers and dielectric constants of various amides

Compound	R_1	$\mathbf{R_2}$	R_3	pK_a	pK_a°	DN (SbCl ₅)	D
Formamide	Н	Н	H	0.12	-0.25		109
N-Methylformamide	H	\mathbf{H}	$\mathrm{CH_3}$	0.52	0.15		177
N,N-Dimethylformamide	H	$\mathrm{CH_3}$	$\mathrm{CH_3}$	0.18	-0.19	26.6	36.1
N,N-Diethylformamide	H	$\mathrm{C_2H_5}$	C_2H_5	0.36	-0.01	30.9	
Acetamide	$\mathrm{CH_3}$	H	Н	-0.025	-0.40		
N-Methylacetamide	CH_3	H	$\mathrm{CH_3}$	0.26	-0.11		179
N,N-Dimethylacetamide	CH_3	$\mathrm{CH_3}$	CH_3	0.62	0.25	27.8	38.9
Chloroacetamide	CH_2Cl	H	H	-0.26	-0.63		
Dichloroacetamide	CHCl_2	H	H	-0.26	-0.63		

¹⁾ G. Wada, This Bulletin, 42, 890 (1969).

²⁾ V. Gutmann and E. Wychera, *Inorg. Nucl. Chem. Letters*, 2, 257 (1966); V. Gutmann, "Coordination Chemistry in Non-Aqueous Solutions," Springer-Verlag, Wien and New York (1968), p. 19.

³⁾ A. Berger, A. Loewenstein, and S. Meiboom, J. Amer. Chem. Soc., 81, 62 (1959); G. Fraenkel and C. Franconi, ibid., 82, 4478

^{(1960);} R. J. Gillespie and T. Birchall, Can. J. Chem., 41, 148 (1963); W. E. Stewart and T. H. Siddall, III, Chem. Rev., 70, 517 (1970); B. G. Cox, J. Chem. Soc., B, 1970, 1780.

⁴⁾ In the cases of urea and its alkyl derivatives, the protonation probably occurs at both O and N atoms. G. A. Olah and M. Calin, J. Amer. Chem. Soc., 90, 401 (1968).

⁵⁾ R. Huisgen and H. Brade, Chem. Ber., 90, 1432 (1957).